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As mentioned in class, the actual construction that ocamlyacc does —the “LALR(1)” construction —is
rather involved. If you’re curious to see it, you can find it in any compiler textbook, or on the web.
There are several related constructions, of which the most important are LR(1), SLR(1), LALR(1), and
LR(0). We often use the term “LR(1)” to refer to any of them, because they’re conceptually similar, but
here’s how they line up: LR(0) is the simplest (though still pretty involved), but cannot be used directly.
SLR(1) is a refinement of LR(0) that is simple but quite useful. LR(1) is the most powerful (can handle the
most grammars), but the construction is quite involved and it produces large tables. LALR(1) handles
more grammars than SLR(1) but fewer than LR(1); its construction is quite involved, but it produces
much smaller tables than LR(1). So, bottom line: LALR(1) is the construction most often used in
practice; SLR(1) is the construction you should read about first if you want to learn about this stuff.

However, if you don’t want to see the construction but are curious about what the verbose ocamlyacc
output means — and, in particular, what “states” are — | can explain that. The entire LR(1) approach to
parsing is based on this theorem, which I'll attempt to explain:

Theorem: For any grammar G, consider all parse trees of G. Each tree corresponds to a shift/reduce
parse (as we discussed in class). Consider all the stack configurations that occur during any of these
parses. Together they form a language over the symbols (terminals and non-terminals) of G. That
language is finite-state.

First, what does it mean to say “each tree corresponds to a shift/reduce parse”? Recall that when we
were practicing shift/reduce parses in class, we always referred to the tree to decide whether to shift or
reduce. Itisimportant to understand that the shift/reduce parsing method can, in principle, produce
any parse tree; it has no inherent limitations. The only question is whether it is possible to decide on the
correct action based only on the stack and a single lookahead symbol.

Now, the idea is to look at the stack configurations — that is to say, what is on the stack — as a language.
We'll do some examples. Consider this simple grammar:

A-> aAc | b

This produces the language a"bc", i.e. a b surrounded by matching a’s and ¢’s. Note that this is not a
finite-state language, because it involves nesting. Consider the parse tree for sentence aaabccc:
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Now consider the shift-reduce parse for this tree: It starts by shifting all the a’s, then the b; so the stack
configurations up to now can be described as some a’s, possibly followed by a b. At this point, we do a
reduce action, leaving the stack aaaA. We now shift the c, giving aaaAc, and then reduce, giving aaA.
Shift the next c and reduce, giving aA, and finally the last ¢, and reduce, giving A. Here, then, are all the
stack configurations encountered during this parse: a, aa, aaa, aaab, aaaA, aaaAc, aaA, aaAc, aA, aAc, A.

It’s pretty clear, | suppose, that it doesn’t matter how many a’s and c’s we start with, the process will be
essentially the same, and the stack configurations will be: a, aa, ..., a", a"b, a"A, a"Ac, a"*A, a"'Ag, ...,
aAc, A. This is a regular set; it can be defined by the regular expression a*(b|A|Ac).

As another example, consider the grammar

L>EL | E
E ->id

which describes sequences of id’s separated by semicolons. A typical sentence is x;y;z, with parse tree:

Again consider the shift/reduce parse that produces this tree: It shifts x and reduces (so the stack can
be x or E), then shifts ; and y (giving stacks E; and E;y), then reduces (E;E) and so on. In the end, all the
stack configurations — and again, we could extend this to a list of any length — have the form of some
number of E’s separated by semicolons, possibly followed by a semicolon and an id. This is again a
regular set, described by the regular expression: id | E (; E)* (; (id)?)?.

It is instructive to look at the left-recursive version of this last grammar:

L->L;E | E
E->id
X;y;z has parse tree: L
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If we look at the shift/reduce parse, we first put x on the stack, then reduce to E, then L (so, so far, the
stack can just be either id, E, or L), then shift the ; and the y (so we can have L; or L;id), then reduce
(giving L;E) and reduce again (L), and we’re back where we started. In fact, in this case, no matter how
long the list is, the only stack configurations possible are: id, E, L, L;, L;id, and L;E. This language is not
only finite-state, it’s actually finite!

As a last example, consider the expression grammar

E->E+E | E*E]|id

This grammar is, of course, ambiguous, so it can have many parse trees for the same input. Consider
input x +y * z. It has two parse trees:
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which lead to different shift/reduce parses. For the left tree, the stack configurations are any sequence
of E’s separated by + or * (with the last E possibly being an id instead); this is given by the regular
expression (E (+]*))* (id|E)?. For the right tree, it is a finite language: it’s either id, E, E+, E+id, E+E, E*,
E*id, or E*E —that’s it, just those eight possibilities. We can see that this finite language is a subset of
the first language. It is not perfectly obvious that this language accounts for every parse tree, because
some parse trees can contain within them both kinds of trees (left-leaning and right-leaning). Butin
fact, that regular expression does account for all stack configurations for this language.

Obviously, this is not a proof of the theorem — the proof is essentially the LR(1) construction — but
hopefully makes the theorem seem plausible. But so what?

Here’s why this matters: If the stack configurations for a grammar constitute a finite-state language,
then we can find a DFA that recognizes them. Now we can do the following: given any stack
configuration — starting with empty, which is always a legal stack configuration (even though we didn’t
include it in our languages) — look at the next symbol (the lookahead symbol) and run the DFA to answer
this question: if we shift, will we still have a legal stack configuration? If so, then shift; if not, then
reduce.



That is the basic idea behind LR(1) parsing. It's not complete, for several reasons; for starters, it doesn’t
say which production to reduce by. But it is the starting point. The states of the verbose ocamlyacc
output are just the states of this DFA, called the “characteristic automaton” of the grammar.



